Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hai-Bo Wang,* Jia-Hui Chen, Yue-Qing Pu and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No.5, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.006 \text{ Å}$ R factor = 0.070 wR factor = 0.229Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-[(2,6-Dimethylphenyl)aminocarbonylmethyl]-4-{[3-(4-nitrophenyl)-1,2,4-oxadiazol-5-yl]-methyl}piperazine

The title compound, $C_{23}H_{26}N_6O_4$, was synthesized by the reaction of 4-[(2,6-dimethylphenyl)aminocarbonylmethyl]-piperazine and 5-chloromethyl-3-(4-nitrophenyl)-1,2,4-oxadiazole. Its molecular structure is characterized by a weak intramolecular $C-H\cdots N$ interaction. The crystal packing is stabilized by weak intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds and a $C-H\cdots \pi$ interaction.

Received 1 October 2004 Accepted 11 October 2004 Online 22 October 2004

Comment

Piperazine derivatives are of great interest because of their physiological activity. Derivatives of piperazine have antifilarial, anti-amoebic and spermicidal properties (Sonurlikar *et al.*, 1977); they also show high efficacy in treating or preventing neuronal damage or stimulating nerve growth (Tomlinson *et al.*, 2004). Some of them are used to treat psychosis and bipolar disorders (Aicher *et al.*, 2004), while others are neurokinin antagonists (Janssens *et al.*, 2004).

The molecular structure of the title compound, (I) (Fig. 1), shows normal bond lengths and angles (Table 1) and a weak intramolecular $C3-H3B\cdots N2$ interaction (Table 2). The crystal packing (Fig. 2) is stabilized by weak intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds and by a $C-H\cdots \pi$ interaction with the C16–C21 ring (Table 2).

Experimental

4-[(2,6-Dimethylphenyl)aminocarbonylmethyl]piperazine (20 mmol) and 5-chloromethyl-3-(4-nitrophenyl)-1,2,4-oxadiazole (20 mmol) were dissolved in anhydrous ethanol (80 ml). The resulting mixture was refluxed for 6 h. The mixture was then concentrated under reduced pressure to afford crude compound (I). Pure compound (I) was obtained by recrystallization from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ¹H NMR (CDCl₃, δ): 8.56 (m, 1H), 8.33–8.34 (m, 2H), 8.27–8.29 (m, 2H), 7.06–7.10 (m, 3H), 4.00 (s, 2H), 3.27 (s, 2H), 2.80 (m, 8H), 2.21 (s, 6H).

Crystal data

 $C_{23}H_{26}N_6O_4$ $M_r = 450.50$ Monoclinic, $P2_1/c$ a = 7.2240 (14) Å b = 9.5650 (19) Å c = 33.245 (7) Å $\beta = 95.22$ (3)° V = 2287.6 (8) Å³ Z = 4 $D_x = 1.308 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 9-12^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.4 \times 0.2 \times 0.1 \text{ mm}$

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

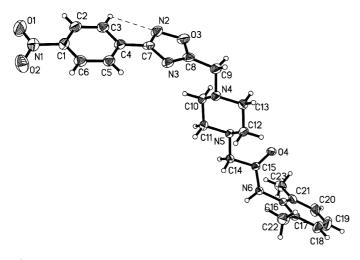


Figure 1 A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular $C-H\cdots N$ interaction.

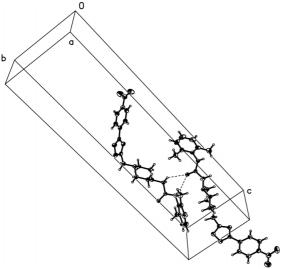


Figure 2 A part of the crystal structure of (I). Dashed lines indicate intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds.

Data collection

= 26.0°
$0 \rightarrow 8$
$0 \rightarrow 11$
$-39 \to 39$
ndard reflections
ery 200 reflections
tensity decay: none

Refinement

v .	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.070$	+ 0.25P]
$wR(F^2) = 0.229$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
4466 reflections	$\Delta \rho_{\text{max}} = 0.38 \text{ e Å}^{-3}$
298 parameters	$\Delta \rho_{\min} = -0.32 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

O3-C8	1.345 (5)	N5-C14	1.465 (5)
O3-N2	1.416 (5)	N6-C15	1.341 (4)
O4-C15	1.235 (4)	N6-C16	1.447 (4)
N2-C7	1.294 (5)	C4-C7	1.474 (6)
N3-C8	1.306 (5)	C8-C9	1.494 (6)
N3-C7	1.379 (5)	C10-C11	1.503 (5)
N4-C9	1.449 (5)	C14-C15	1.504 (5)
N4-C13	1.462 (5)	C17-C22	1.495 (6)
N5-C12	1.459 (5)		
C8-O3-N2	106.2 (3)	N3-C8-O3	113.2 (4)
C7-N2-O3	103.2 (3)	N4-C9-C8	113.0 (4)
C8-N3-C7	102.0(3)	N5-C14-C15	112.2 (3)
C9-N4-C13	108.9 (3)	O4-C15-N6	122.8 (3)
C13-N4-C10	108.1 (3)	O4-C15-C14	122.5 (3)
C11-N5-C14	110.2 (3)	N6-C15-C14	114.7 (3)
C15-N6-C16	123.6 (3)	C17-C16-N6	116.5 (4)
C6-C1-N1	119.7 (4)	C16-C21-C20	117.8 (5)
C5-C4-C7	121.7 (4)	C16-C21-C23	123.0 (4)
N2-C7-N3	115.4 (4)	C20-C21-C23	119.2 (4)

Table 2 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} N6 - H6A \cdots O4^{i} \\ C3 - H3B \cdots N2 \\ C14 - H14B \cdots O4^{i} \end{array} $	0.86 0.93 0.97	2.22 2.48 2.57	3.055 (4) 2.798 (6) 3.302 (5)	163 100 132
$C10-H10A\cdots Cg^{ii}$	0.96	2.61	3.563 (7)	166

Symmetry codes: (i) $1-x,\frac12+y,\frac12-z$; (ii) $1-x,y-\frac12,\frac12-z$. Cg is the centroid of the C16–C21 ring.

All H atoms bonded to the C atoms were positioned geometrically, with C—H = 0.93–0.96 Å, and included in the refinement in a riding-model approximation, with $U_{\rm iso}({\rm H})=1.2$ or $1.5\,U_{\rm eq}$ of the carrier atom. The H atom bonded to the N atom was positioned geometrically, with N—H = 0.86 Å, and included in the refinement in a riding-model approximation, with $U_{\rm iso}({\rm H})=1.2\,U_{\rm eq}({\rm N})$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD*4 (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

Aicher, T. D., Chen, Z., Le Huerou, Y., Martin, F. M., Pineiro-Nunez, M. M., Rocco, V. P., Ruley, K. M., Schaus, J. M., Spinazze, P. G. & Tupper, D. (2004). Patent WO 2 004 014 895.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Janssens, F. E., Sommen, F. M., De Boeck, B. C. A. G., Leenaerts, J. E., Van Roosbroeck, Y. E. M. & Diels, G. S. M. (2004). Patent WO 2 004 033 428.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sonurlikar, U. A., Shanker, B., Kirke, P. A. & Bhide, M. B. (1977). Bull. Haffkine Inst. 5, 94–96.

Tomlinson, R., Lauffer, D. & Mulican, M. (2004). US Patent No. 2 004 034 019.